

General Description

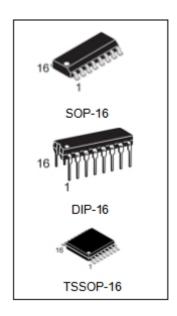
The 74HC/HCT192 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT192 are synchronous BCD up/down counters. Separate up/down clocks, CPU and CPD

respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CPU clock is pulsed while CPD is held HIGH, the device will count up. If the CPD clock is pulsed while CPU is held HIGH, the device will count down. Only one clock input can be held HIGH at any time, or erroneous operation will result. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input (PL). The "192" contains four master-slave JK flip-flops with the necessary steering logic to provide the asynchronous reset, load, and synchronous count up and count down functions.

Each flip-flop contains JK feedback from slave to master, such that a LOW-to-HIGH transition on the CPD input will decrease the count by one, while a similar transition on the CPU input will advance the count by one. One clock should be held HIGH while counting with the other, otherwise the circuit will either count by two's or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either clock input is LOW. Applications requiring reversible operation must make the reversing decision while the activating clock is HIGH to avoid erroneous counts.

The terminal count up (TCu) terminal count down(TCD) its are normally HIGH. When the circuit

has reached the maximum count state of 9, the next HIGH-to-LOW transition of CPU will cause TC_U) LOW. wil TC_U /LOW until CPU goes HIGH again, duplicating the count up clock. Likewise, the TC_D output will go LOW when the circuit is in the zero state and the CPD goes LOW. The


terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock wave forms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added. The counter may be preset by the asynchronous parallel load capability of the circuit. Information present

on the parallel data inputs (D0 to D3) is loaded into the counter and appears on the outputs (Q0 to Q3) regardless of the conditions of the clock inputs when the parallel load (\overline{PL}) input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs (Q0 to Q3) LOW. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted.

FEATURES

- > Synchronous reversible counting
- > Asynchronous parallel load
- > Asynchronous reset
- > Expandable without external logic
- > Output capability: standard
- ➤ ICC category: MSI

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
74HC192N	DIP-16	74HC192	TUBE	1000pcs/Box
74HC192M/TR	SOP-16	74HC192	REEL	2500pcs/Reel
74HC192MT/TR	TSSOP-16	HC192	REEL	2500pcs/Reel
74HCT192N	DIP-16	74HCT192	TUBE	1000pcs/Box
74HCT192M/TR	SOP-16	74HCT192	REEL	2500pcs/Reel
74HCT192MT/TR	TSSOP-16	HCT192	REEL	2500pcs/Reel

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 °C$; $t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVIBUL	PARAMETER	CONDITIONS	НС	нст	CIVIT	
tphl/ tplh	propagation delay CPD, CPU to Qn	OL - 45 pF: \/OC -5\/	20	20	ns	
f _{max}	maximum clock frequency	CL = 15 pF; VCC =5V	40	45	MHz	
TL	Soldering temperature	10s	-	245	°C	
Cı	input capacitance		3.5	3.5	pF	
СРД	power dissipation capacitance per package	notes 1 and 2	24	28	pF	

Notes: 1, CPD is used to determine the dynamic power dissipation (PD in μW):

PD=CPD×VCC² ×fi + Σ (CL×VCC² ×FO)where: fi=input frequency in MHz

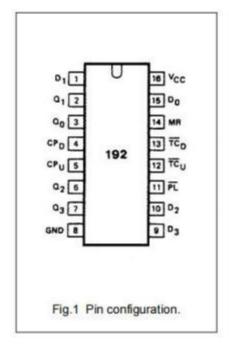
fo=output frequency in MHz

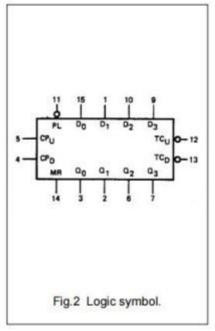
 $\Sigma(CL \times VCC^2 \times FO)$ =sum of outputs CL = output load capacitance in pF

VCC = supply voltage in V

2. For HC the condition is VI = GND to VCC

For HCT the condition is VI = GND to VCC-1.5V




PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
3, 2, 6, 7	Q0 to Q3	flip-flop outputs
4	CP _D	count down clock input(1)
5	CP∪	count up clock input(1)
8	GND	ground (0 V)
11	PL	asynchronous parallel load input (active LOW)
12	TC∪	terminal count up (carry) output (active LOW)
13	TC _D	terminal count down (borrow) output (active LOW)
14	MR	asynchronous master reset input (active HIGH)
15, 1, 10, 9	D ₀ to D ₃	data inputs
16	Vcc	positive supply voltage

Note

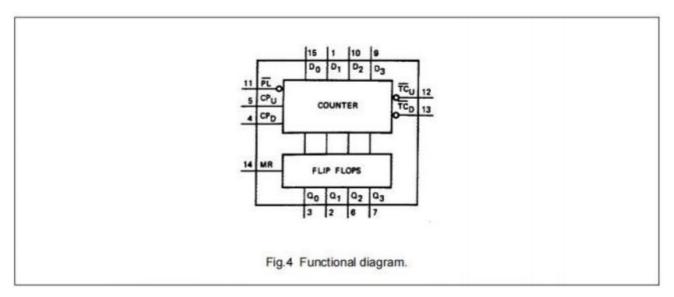
1. LOW-to-HIGH, edge triggered

FUNCTION TABLE

OPERATING MODE		INPUTS								OUTPUTS				
OPERATING WIDDE	MR	PL	CPU	CPD	D0	D1	D2	D3	Q0	Q1	Q2	Q3	TCu	TCD
reset (clear)	Н	Χ	Х	L	Χ	Х	Х	Х	L	L	L	L	Н	L
reset (olear)	Н	Χ	Х	Н	Χ	Х	Х	Х	L	L	L	L	Н	Н
	L	L	Х	L	L	L	L	L	L	L	L	L	Н	L
parallel load	L	L	Х	Н	L	L	L	L	L	L	L	L	Н	н
paralier load	L	L	L	X	Н	Х	Х	Н		Qn :	= Dn		L	н
	L	L	Н	Х	Н	Х	Х	Н		Qn :	= Dn		Η	Н
count up	L	Н		Н	Χ	Х	Х	Х	count up		H ⁽²⁾	Н		
count down	L	Н	Н		Х	Х	Х	Х	count down		Н	H ⁽³⁾		

Notes

H = HIGH voltage level


L = LOW voltage level

X = don' t care

↑ = LOW-to-HIGH clock transition

- $\frac{1}{10}$ $\frac{1}{10}$ = CPU at terminal count up (HLLH)

 $-\frac{10}{TC}$ - D = CPD at terminal count down (LLLL)

Clear overrides load, data and count inputs.

When counting up the count down clock input (CPD) must be HIGH, when counting down the count up clock input (CPU) must be HIGH.

Sequence

Clear (reset outputs to zero); load (preset) to BCD seven; count up to eight, nine, terminal count up, zero, one and two; count down to one, zero, terminal count down, nine, eight, and seven.

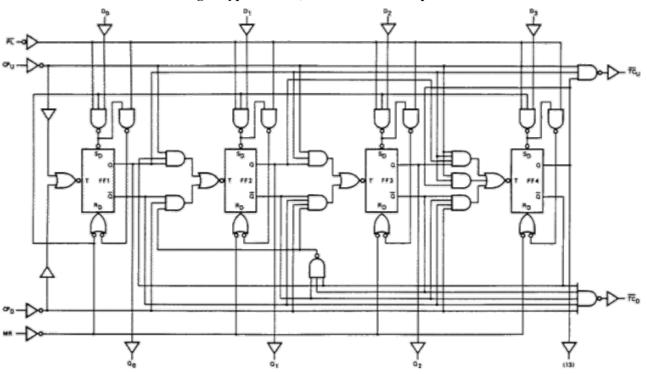


Fig.5 Typical clear, load and count sequence.

Fig. 6 Logic diagram.

DC CHARACTERISTICS FOR 74HC

Output capability: standard

Icc category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \text{ V}; t_r = t_f = 6 \text{ ns}; C_L = 50 \text{ pF}$

				Т	amb (。	C)				TEST CONDITIONS		
					74HC	;						
SYMBOL	PARAMETER		25		-40 t	o +85	-40 t	:o +125		• •	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(V)		
	propagation delay		66	215		270		325		2.0		
t _{PHL} / t _{PLH}	CP _∪ , CP _D to Qn		24	43		54		65	ns	4.5	Fig.7	
	CFU, CFD tO QII		19	37		46		55		6.0		
	propagation delay		33	125		155		190		2.0		
tphl/ tplh	CP _U to TC _U		12	25		31		38	ns	4.5	Fig.8	
	01 0 10 100		10	21		26		32		6.0		
	propagation delay		39	125		155		190		2.0		
tphl/ tplh	CP _D to TC _D		14	25		31		38	ns	4.5	Fig.8	
	Of p to TOp		11	21		26		32		6.0		
	propagation delay		69	215		270		325		2.0		
tphl/ tplh	t _{PLH} PL to Qn		25	43		54		65	ns	4.5	Fig.9	
			20	37		46		55		6.0		
nronagation delay	propagation delay		63	200		250		300		2.0		
t PHL	MR to Qn		23	40		50		60	ns	4.5	Fig.10	
	WIT TO QIT		18	34		43		51		6.0		
	propagation delay		91	275		345		415		2.0		
t PHL	Dn to Qn		33	55		69		83	ns	4.5	Fig.9	
	Dir to Qir		26	47		59		71		6.0		
	propagation delay		80	240		300		360		2.0		
t PHL	Dn to Qn		29	48		60		72	ns	4.5	Fig.9	
	Dir to Qir		23	41		51		61		6.0		
	propagation delay		102	315		395		475		2.0		
tphl/ tplh	PL to TCU,		37	63		79		95	ns	4.5	Fig.12	
	PL to TC _D		30	54		67		81		6.0		
	propagation delay		96	285		355		430		2.0		
tphl/ tplh	MR to TC u,		35	57		71		86	ns	4.5	Fig.12	
	MR to TC □		28	48		60		73		6.0		
	propagation delay		83	290		365		435		2.0		
tphl/ tplh	Dn to TC u,		30	58		73		87	ns	4.5	Fig.12	
	Dn to TC □		24	49		62		74		6.0		
			19	75		95		110		2.0		
tTHL $/$ t TLH	output transition time		7	15		19		22	ns	4.5	Fig.10	
			6	13		16		19		6.0		

				T	amb (。	C)			TEST CONDITION		
					74HC	;					
SYMBOL	PARAMETER		+25		-40 t	o +85	-40 t	o +125	UNIT	VC C	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(V)	
	up clock pulse width	120	39		150		180			2.0	
tW	HIGH or LOW	24	14		30		36		ns	4.5	Fig.7
	HIGH OF LOW	20	11		26		31			6.0	
	down clock pulse	140	50		175		210			2.0	
tW	width HIGH or LOW	28	18		35		42		ns	4.5	Fig.7
	Widai Filori di 2000	24	14		30		36			6.0	
	master recet pulse	80	22		100		120			2.0	
tW	master reset pulse width HIGH	16	8		20		24		ns	4.5	Fig.10
	Widdiffilori	14	6		17		20			6.0	
	navallal land mulan	80	22		100		120			2.0	
tW	y parallel load pulse width LOW	16	8		20		24		ns	4.5	Fig.9
		14	6		17		20			6.0	
		50	3		65		75			2.0	
trem	removal time	10	1		13		15		ns	4.5	Fig.9
	PL to CPU, CPD	9	1		11		13			6.0	_
		50	0		65		75			2.0	
trem	removal time	10	0		13		15		ns	4.5	Fig.10
	MR to CPU, CPD	9	0		11		13			6.0	_
		80	22		100		120			2.0	
tsu	set-up time	16	8		20		24		ns	4.5	Fig. 11 note:
	Dn to PL	14	6		17		20			6.0	CP _U = CP _D = HIGH
		0	14		0		0			2.0	
th	hold time	0	5		0		0		ns	4.5	Fig.11
	Dn to PL	0	4		0		0			6.0	
		80	19		100		120			2.0	
th	hold time CPU to	16	7		20		24		ns	4.5	Fig.13
	CPD, CPD to CPU	14	6		17		20			6.0	
		4.0	12		3.2		2.6			2.0	
fmax	maximum up, down	20	36		16		13		MHz	4.5	Fig.7
	clock pulse	24	43		19		15			6.0	1.3
	frequency										

DC CHARACTERISTICS FOR 74HCT

Output capability: standard ICC category: MSI

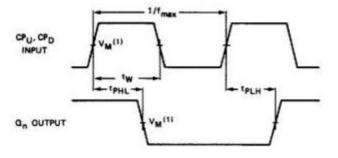
Note to HCT types

The value of additional quiescent supply current (Δ ICC) for a unit load of 1 is given in the family specifications.

To determine \triangle ICC per input, multiply this value by the unit load coefficient shown in the table below.

	===p 000, ===0===
INPUT	UNIT LOAD COEFFICIENT
Dn	0.35
CP _U , CP _D	1.40
PL	0.65
MR	1.05

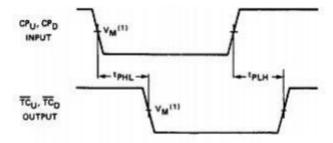
AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 \text{ ns}; CL = 50 pF$

	, H H O HO, CE SO	P [*]		T	amb (。	C)				TEST CONDITIONS		
SYMBOL	PARAMETER				74HC	Т			UNIT	.,,,,,		
STWIBOL	PARAMETER		+25		-40 t	o +85	-40 to +125		UNIT	(V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(-,		
tehr/terh	propagation delay		23	43		54		65	ns	4.5	Fig.7	
a ne a en	CP∪, CPD to Qn		20	70		04		00	113	7.5	1 19.7	
tent/telh	propaga <u>tion</u> delay		16	30		38		45	ns	4.5	Fig.8	
CFIID CFEII	CPU to TCu		10	30		30		73	115	4.5	1 19.0	
t _{PHL} / t _{PLH}	propaga <u>tion</u> delay		17	30		38		45	ns	4.5	Fig.8	
(PHD (PLH	CPD to TC _D		17	30		30		73	115	4.5	i ig.o	
t _{PHL} / t _{PLH}	propagation delay		28	46		58		69	ns	4.5	Fig.9	
(PHD (PLH	PL to Qn		20	40		50		09	115	4.5	1 19.9	
t _{PHL}	propagation delay		24	40		50		60	ne	4.5	Fig.10	
LPHL	MR to Qn		24	40		30		00	ns	4.5	1 19.10	
t _{PHL} / t _{PLH}	propagation delay		36	62		78		93	ns	4.5	Fig.9	
(PHD (PLH	Dn to Qn		30	02		70		93	115	4.5	1 19.9	
tphl/tplh	<u>pro</u> pag <u>atio</u> n delay		36	64		80		96	ns	4.5	Fig.12	
a ne a en	PL to TC∪, PL to T€D		30	04				30	113	7.5	1 19.12	
t _{PHL} / t _{PLH}	propag <u>atio</u> n delay		36	64		80		96	ns	4.5	Fig.12	
	MR to TC _∪ , MR to T€ _D			Ŭ .					110		1 19.12	
t _{PHL} / t _{PLH}	propag <u>ati</u> on delay		33	58		73		87	ns	4.5	Fig.12	
	Dn to TCu, Dn to TCD							<u> </u>	110		9	
tthl/ ttlh	output transition time		7	15		19		22	ns	4.5	Fig.10	
t	up, down clock pulse	25	14		31		38		no	4.5	Fig.7	
tw	width HIGH or LOW	20	14		31		30		ns	4.5	Fig.7	

tw	master reset pulse width HIGH	16	6	20	24	ns	4.5	Fig.10
tw	parallel load pulse width LOW	20	10	25	30	ns	4.5	Fig.9
trem	removal time PL to CPu, CPD	10	1	13	15	ns	4.5	Fig.9
trem	removal time MR to CPu, CPD	10	2	13	15	ns	4.5	Fig.10
tsu	set-up time Dn to PL	16	8	20	24	ns	4.5	Fig. 11 note: $CP_U = CP_D =$ HIGH
th	hold time Dn to P L	0	-6	0	0	ns	4.5	Fig.11
th	hold time CPu to CPD, CPD to CPU	20	9	25	30	ns	4.5	Fig.13
fmax	maximum up, down clock pulse frequency	20	41	16	13	MHz	4.5	Fig.7

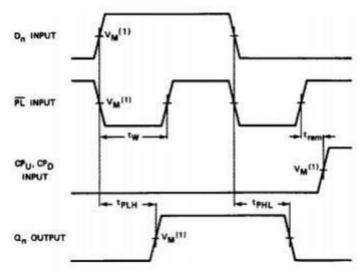
AC WAVEFORMS



(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} .

HCT: $V_M = 1.3 V$; $V_I = GND$ to 3 V.

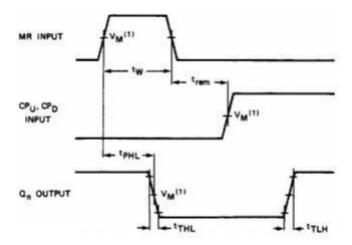
Fig.7 Wave forms showing the clock (CP_U , CP_D) to output (Qn) propagation delays, the clock pulse width and the maximum clock pulse frequency.



(1) HC : VM = 50%; VI = GND to VCC.

HCT: VM = 1.3 V; VI = GND to 3 V.

Fig. 8 Wave forms showing the clock (CPU, CPD) to terminal count output (TC U, TC D) propagation delays.

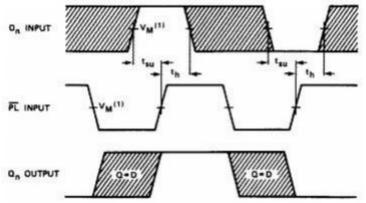


(1) HC : VM = 50%; VI = GND to VCC.

HCT: VM = 1.3 V; VI = GND to 3 V.

Fig.9 Wave forms showing the parallel load input (\overline{PL}) and data (Dn) to Qn output propagation delays and

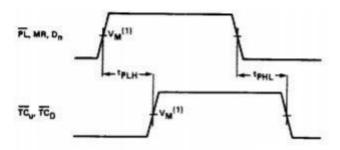
P L removal time to clock input (CPU, CPD).



(1) HC : VM = 50%; VI = GND to VCC.

HCT: VM = 1.3 V; VI = GND to 3 V.

Fig. 10 Wave forms showing the master reset input (MR) pulse width, MR to Qn propagation delays, MR to CPU, CPD removal time and output transition times.



The shaded areas in _______performance.

(1) HC : VM = 50%; VI = GND to VCC.

HCT: VM = 1.3 V; VI = GND to 3 V.


Fig. 11 Waveforms showing the data input (Dn) to parallel load input (PL) set-up and hold times.

(1) HC : VM = 50%; VI = GND to VCC.

HCT: VM = 1.3 V; VI = GND to 3 V.

Fig. 12 Waveforms showing the data input (Dn), parallel load input (-PL $^-$) and the master reset input (MR) to the terminal count outputs (TC \overline{U} , TC \overline{D}) propagation delays.

(1) HC : VM = 50%; VI = GND to VCC.

HCT: VM = 1.3 V; VI = GND to 3 V.

Fig. 13 Waveforms showing the CPU to CPD or CPD to CPU hold times.

APPLICATION INFORMATION

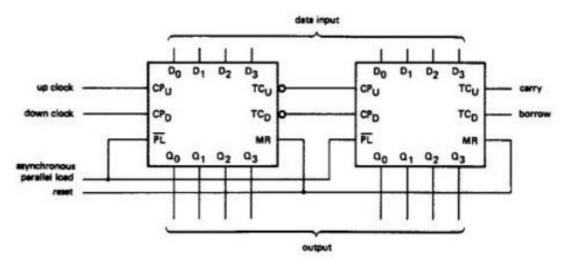
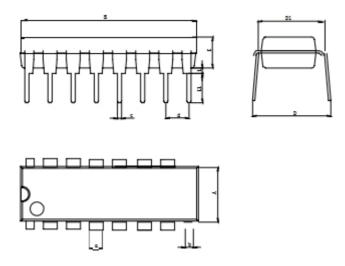
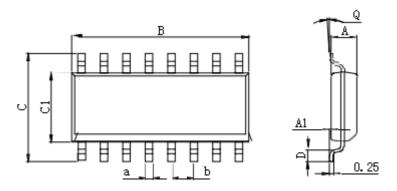
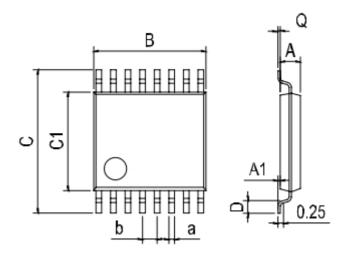



Fig. 14 Cascaded up/down counter with parallel load.


PHYSICAL DIMENSIONS

DIP-16

Dimensions In Millimeters(DIP-16)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC


SOP-16

Dimensions In Millimeters(SOP-16)											
Symbol:	А	A1	В	С	C1	D	Q	а	b		
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC		
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	1.27 BSC		

TSSOP-16

Dimensions In Millimeters(TSSOP-16)											
Symbol:	Α	A1	В	С	C1	D	Q	а	b		
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC		
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.00 BSC		